USE OF THE PONTRYAGIN MAXIMUM PRINCIPLE TO SOLVE
AN INVERSE HEAT CONDUCTION PROBLEM

M. P, Leonchuk UDC 536.21

A numerical solution of an inverse problem in heat conduction theory is obtained using a gra-
dient method based on the discrete Pontryagin maximum principle.

In many investigations in experimental thermophysics the need arises to solve the so~called inverse
heat conduction problem (IHCP). For example, to determine the heat transfer coefficient
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where @, is the heat flux; 6. is the temperature of the inner wall surface; tf is the mean calorimetric fluid
temperature. Direct measurement of &, and 0, is difficult in the majority of cases, while it is easy to
measure the temperature of the outer surface 0x* of the channel wall and the heat flux ®«. Therefore, the
problem is to determine 9, and &, by solving the heat conduction equation (for simplicity we shall restrict
consideration to an infinite plate of thickness 1)
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However, the problem is incorrect in this formulation, and it is known that considerable difficulties arise
in solving it, Moreover, direct measurement of temperatures and heat fluxes on the outer plate surface
require a certain time, during which the plate acquires (or gives up) heat from inside, without appreciable
change of the temperature at a point on the outer surface, Since the temperature at such a point is a func-
tion of the total heat flux, which varies with time, the initial indeterminacy does not allow a unique solu-
tion of the IHCP from the empirically obtained temperature values, using methods of solution which deter-
mine the unknown quantities ®,, 6 at each ambient time instant,

Several approaches to solution of an THCP are known in the literature. Operational methods are
used in [1-3]. In [4-6] a solution is found in series form, the coefficients depending on time, and deter-
mined in terms of the n-derivatives of the measured temperature 6x(r) and the heat flux ®x(7), i.e., in-
finite differentiability of the boundary conditions is assumed. However, it is known that if 9x(7) and ®x (1)
have been determined experimentally, it is not possible to determine the higher derivatives accurately, a
fact which has an appreciable bearing on the practical value of the solution obtained [4-6]. Frank [7] uses
a method of least squares to solve an IHCP. A defect of the method is the need to represent the heat

flux in the form & , = Z a, v*, and also the difficulties involved in solving (by the least-squares method)
n=0

an over-defined linear system of high order relative to @n. Reference [8] uses the Tikhonov regulariza-

tion method to solve an IHCP,
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In order to bring out the difficulties in solving an IHCP, we shall use an iterative method of solution,
We shall consider a finite-difference approximation of Egs. (2b) and (1):

3EHAT — 49THAT - gTHAT = ), , (3)
Ot —BOTA T 40 = —FT o =1,2, .., N=1, (4)
where B = 2 +(Ax*/A7a); Ff = (Ax*/A7a)07. We note that, although the system of equations (3) and (4) is
unfactorized, it is easy to generalize the iterative method of solution, as follows.

Straight-line steps:
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where 8n, zn are step coefficients, corresponding to the problem with boundary condition (2b). With
boundary condition (2a) and taking into account Eq. (4), we have
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The relations for reverse steps are:
05T = Bt 0741 - 2o - (6a)
ertz+M= Brosa efjl—?t + Zpr- (6b)

Therefore, to determine the temperature with x =7, the matter reduces to solutionof the system of two
equations (6a), (6b) with n = N—1, whose determinant is A = BI'\I —~BN. It is easy to see that the value of
Bn tends to the limiting value g = (B— v BZ— 4)/2 as n increases, independently of the initial approxima-
tion [ = 2 — (B/2) or ﬁ; = 0}. Since Bi\I — By — 0as N — =, the accuracy in finding 6y from Egs. (6a) and
(6b) decreases with increase of N. The method suggested in the present paper for solution of the IHCP is
the Pontryagin discrete maximum principle [9], and an example of solution by this method is given.

In order to use methods from the theory of optimum control to solve the IHCP, we shall formulate
the problem in an equivalent variational form. To do this, we consider 8,(, 7} = ON(7) as a control func-
tion of a process described by the heat conduction equation with boundary condition Eq. (2) (for simplicity
we shall put ®x = 0 below), and shall determine 9N(7) from the condition that the functional

T
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should be a minimum, or in finite~-difference form:
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where M is a weighting coefficient. Here it is assumed that the control function 6x(7) belongs to some re-
gion Oymin = ON =< Omax'. We shall construct the associated system of equations for Egs, (8), (4), and (8):
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and shall use a gradient method, similar to that in [10]. For this purpose we assign some zero-order ap-
proximation for the desired temperature 0{\%’)(7). Using the iterative method of Egs. (5) and (6b) to solve the
system-of equations (3), (4), and (8) from 7 =0to 7 =T, we find and store the quantity M|8,(1) —0x (1] at
several time instants 7, and for T = T we determine the functional F and pp(T) n =1, 2,..., N):
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Fig.1. Solution of an inverse heat conduction prob-
lem 9(l, 1) for a linear variation of measured tem-
perature 6x(0, 7) and heat flux % = 0,
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F= %"‘T 16.(7) — 8, (D + = (D), (10)
Pa{T) = M, [0, (T) — 0, (D], py (T) = Myl (T), (11)

where M;, My are also weighting coefficients.

With the end conditions found at 7= T for p,(T), by solving the associated system, Eq.(9), from 7 =T,
7 =0, using an iterative method, we find pn(7), and also aH/aoN = pN_i('r)a/sz, and the maximum of 5H
/90N = 8H, /50N, in absolute magnitude, Here the iteration coefficients take the values
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where Cy and EJ are determined from Eqgs. (9), written in the form:
Pitt— Bpr - Copi = —Fl, n=2,3, .., N—2

The inverse iteration relations are

A x*
Zyy = P
pr——At — Ata 5
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For the next iteration we assume
OH {v)/08,,

e\ (12)
[0H,/36, |

B+ (1) = O (1) — u®

and repeat the process until we obtain the given accuracy. Here u(k) is thelength of the gradient step, as
signed initially from physical considerations, and is changed during the iteration, depending on variation
of the sign of 5Hy/80N. If 9H,/90N changes sign in the k-th iteration, we take u{k+!) = 1(® /2 for the next
iteration. If 8H, /96y retains its sign for several iterations, we double u(¥) for the next iteration. By way
of example we shall examine solution of an IHCP with a linear law for the variation of measured tempera~
ture:
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and the following constants: I = 0.02 m; @ = 5.342-107° m?/sec; M = 0.1; Mp = 0.01, My = 0.1; p(0 = 7;
AT = 0.1; Ax = 5-10"%. Figure 1 shows the results of calculating the temperature variation of the inner
wall surface by the above method (12 iterations). The calculation was carried out with a program written
for the M-20 machine. The initial approximation used was 91(\?)( 7 = 8x(7). Figure 1 shows that the solution
On(T) is quite monotonic. The calculated 6(0, 7) is in good agreement with the given value 0«(7). There is
some discrepancy for small values oftime (up to 3°C), due to the effect of indeterminacy in formulating the
initial conditions 6(x, 0) (we assumed 8(x, 0) = 220°C; 0 =< x =), and the finite rate of propagation of the
heat wave due to the finite-difference method of computation, In this example we naturally consider the
initial conditions to be free and we determine them from the condition that the functional (10) be minimized
using the algorithm described in [10].

In conclusion the author expresses his gratitude to A.S. Trofimov for his interest and assistance in
the work.

NOTATION
o,a, A are the heat transfer coefficient, thermal diffusivity, and thermal conductivity;
$ol, 1), $x(0, 7Y are the heat fluxes at the inner and outer plate surfaces;
8(x, 1) is the plate temperature;
8x (1) is the measured outer temperature;
0c(T) is the desired temperature at the inner plate surface;
T is the time, sec;
tf is the fluid temperature;
X is the spatial coordinate;
A is the plate thickness;
AT, A X is the pitch of mesh in time and space;
P is the associated variable.
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